If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5h+h^2=84
We move all terms to the left:
5h+h^2-(84)=0
a = 1; b = 5; c = -84;
Δ = b2-4ac
Δ = 52-4·1·(-84)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*1}=\frac{-24}{2} =-12 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*1}=\frac{14}{2} =7 $
| 3(w-4)-6=-4(-5w+4)-3w | | 5h+5^2=84 | | V=3.14r*2(10) | | -0.5(8x+3.38)=-4x+15.77 | | 4(x-2)=9(x+2) | | -5x-150=66-14x | | 12x+9+51=180 | | 8.5x-2(2x+8)=13 | | -14=a+39 | | 34=4(u+6)-6u | | 82-0.4x=78 | | (4/3)+(2/3x)=(41/18)+(7/6x)+(3/18) | | -33+5x=8x+33 | | H=16^2+160t+16 | | (1/5)x^2-941/25)x-(36/25)=0 | | 2x+20+3x-5=180 | | -92+x=-10x+128 | | (1/16x^2)-(3/2x)+8=0 | | -5(x-3)=44 | | 1/16x^2-3/2x+8=0 | | -213-13x=13x=75-4x | | (5x-35)=180 | | 12.5÷2(6x+7x)=50 | | 3x-2.5x-6x+6.5x=625÷25-1 | | -3+2y=11 | | 4n-8=5n | | 3-3x-36x^2= | | x+1/2+2/x+1-x+1/3-3/x+1=-5/6 | | 9x^2+142=142 | | 3÷x=24 | | 4(-2n+2)-7n=36-4n | | 4/3+2/3x=41/18+7/6x+3/18 |